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Abstract 
 

For any earthquake, the slipping fault area and the source of high-frequency seismic waves, by and 
large, coincide. However on a more local scale the areas of high seismic slip rate and of increased high-
frequency radiation capability (increased HF seismic luminosity) need not to be closely correlated. To study 
in more detail how slip rate and seismic luminosity are interrelated, a systematic analysis is performed that 
uses teleseismic P-waves of 23 intermediate-depth earthquakes of magnitude above 6.8. From each of the 
344 “raw” broadband time functions, we first determine two time histories: (1) displacement and (2) squared, 
0.5-2.5Hz band-passed, velocity, or “power”, and then calculate the correlation coefficient, ρ, between them. 
The 0.5-2.5 Hz “power” signal is distorted by the scattering in the Earth that smears it and generates P-coda. 
To overcome this difficulty, before performing the correlation analysis, the displacement is artificially 
distorted through the convolution with an appropriate time function, that simulates the scattering in the Earth. 
Even if a perfect correlation between fault slip and seismic luminosity is assumed the estimated values of ρ 
will be somewhat lower than unity, because of the random character of high-frequency waves. We estimated 
the average value ρ=0.52 for the correlation coefficient between the radiated time histories for displacement 
and “power”. This value can be ascribed to the similar correlation coefficient between slip rate and HF 
seismic luminosity over the source area. When two contributing factors - fluctuations and genuine mismatch 
of slip rate and mean luminosity - are isolated, fluctuations produce ρ=0.72 and the mismatch produces 
ρ=0.83. Thus the observed values of ρ indicate genuine differences between the distributions of the slip rate 
and the seismic luminosity over the fault area. These results provide important constraints both for the 
accurate wide-band simulation of strong ground motion and for theoretical dynamic source models.  
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INTRODUCTION 
 
In modern seismology, it is widely accepted that the source of seismic waves, including high-frequency (HF) 
waves, is a fast-slipping patch on a geological fault, named earthquake fault. This means: no slip, no HF 
seismic energy; and, neglecting creeping faults or fault patches, this is generally true. However, the majority 
of fault models that deal with high-frequency radiation assume more than that. The common property of the 
fault models, usually implicit, is that the HF radiation increases with increasing slip rate, or, for composite 
models, that HF energy increases with increased subsource seismic moment. Examples are the composite 
models formulated by Blandford (1974), Hanks (1979), Boatwright(1982; 1987), Papageorgiou and Aki 
(1983), and Gusev(1989). This property of the listed models can be considered  a reasonable initial 
approximation. To find out how close, in real earthquakes, it is the actual correlation between slip rate and 
HF radiation capability an independent inversion for each of the two quantities is needed. For brevity, from 
now on, we shall call the HF radiation capability, or more accurately the radiated power per unit source area, 
“seismic luminosity”, transferring to seismology the standard light-engineering term for the similar 
parameter used to specify the radiated light power. In seismology, we additionally need a term for the (total) 
radiated HF energy per unit source area, that is for the integral of seismic luminosity over the source duration 
time, or essentially over the rise time; we can call this integral “cumulative seismic luminosity”. We shall not 
mention common luminosity any more, and for brevity we will use the term “luminosity” meaning “seismic 
luminosity”. Distributions of luminosity peak values and of cumulative luminosity over the fault area are 
probably strongly correlated, because the value of the rise time does not seem to vary too much over the fault 
area, as it follows from (Heaton 1990).  

At present, a considerable number of inversions for space-time distributions of luminosity or 
cumulative luminosity have been performed (Iida & Hakuno, 1984; Gusev and Pavlov, 1992, 1997; Zeng et 
al., 1993; Kakehi and Irikura, 1995; Nishimura et al., 1996). These inversions show that the spatial 
distributions of luminosity (or cumulative luminosity) generally resemble those of the slip rate, but do not 
coincide with them and sometimes significant differences can be seen. Therefore observational data 
generally do not strongly support the idea that luminosity is tightly related to the slip rate. 
 The inversion of the slip rate and luminosity distributions in space-time is a complicated and error-
prone procedure with limited resolution. In the following we try to derive information on slip-luminosity 
correlation directly from far-field (teleseismic) body-wave records, which clearly bear some information on 
this unknown. A potential difficulty of this approach is the fact that the formation of a far-field body wave 
pulse is a kind of projection from 3D to 1D, with possible loss of information. However, this seems to be 
only an apparent problem. It will be shown that, at least in the simplest approximation of a completely 
incoherent source, one can merely equate the level of correlation between far-field displacement time history 
and far-field HF squared velocity or “power” time history on one side, and a similar level for source slip rate 
and source luminosity, on the other side. Therefore, from an analysis of body wave data one can directly 
deduce properties of fault radiation.  
 To obtain an estimate of such an empirical kind is interesting, and also rather valuable from the 
practical viewpoint, because it can be used to verify and/or improve wideband models of fault radiation used 
for the prediction of strong ground motion. However, from a more general viewpoint it is far from being 
satisfactory. As well known, after band-pass filtering by an octave or comparable filter, the HF body wave 
signal from an earthquake looks much like a non-stationary random signal, or modulated noise. It is natural, 
and was proposed long ago, to treat such a signal as a realization (sample function) of a random process. 
Departing from the notion of random process we can introduce, for a given frequency band, a mean, “ideal” 
time history of power (ensemble mean, or modulating function, or mean envelope). This mean power signal 
is a kind of ideal object, unobservable directly. Generally speaking, it might be estimated from data very 
accurately with sufficiently wide-band data. Unfortunately, seismological data are narrow-band and the 
difference between “ideal” and observed power signal must be substantial. This difference often labeled as 
“the effect of random fluctuations”.  
 Consider now the reference case, when the source mean power signal at HF is accurately 
proportional to the slip rate, or the body wave mean power signal is proportional to wave displacement. With 
“ideal” signals, the correlation coefficient will be equal to unity. With real signals, random fluctuations will 
bring this coefficient down. (To what extent, depends on the bandwidth). It is important to distinguish 
between this “fluctuational” decorrelation, rooted in physically uninteresting inherent fluctuations of random 
signal, and the “physical” decorrelation related to the lack of mentioned proportionality (and giving us some 
important information regarding the source process). Let us now represent these ideas in parametric form. 
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When both kinds of decorrelation operate, we must distinguish between three kinds of correlation 
coefficient: (1) observed one, i.e. between observed displacement and observed squared filtered velocity, 
denoted ρob, (2) “ideal” one, between observed displacement and (unobservable) mean power, denoted ρid 
and (3) reference one: the mean value of ρob for the hypothetic case when only “fluctuational” decorrelation 
is present (and the correlation between observed displacement and “mean” power is perfect); we denote it 
ρobmax. This last value gives us the maximum among average observed correlation values obtained with 
different  possible values of ρid . We shall estimate this value through Monte-Carlo simulation.. There is no 
real interest to show that ρob is significantly below unity because this is the trivial outcome of “fluctuational” 
decorrelation. What deserves efforts is to show that ρob is significantly lower than ρ obmax , or equivalently that 
ρid is less than unity. This is the aim of the present study. Note that the entire above discussion of mean and 
observed body wave signals is equally applicable to the time history of an earthquake source. 
 When one tries to analyze correlation between displacement and HF power signals, one meets with a 
problem: the HF signal is markedly distorted by scattering along the path (this is evident as the formation of 
P coda). To bypass this obstacle, before comparing displacement and “power” signal, we artificially distort 
the displacement signal by convolution with an analog of the “power Green’s function of the medium”. 
 The plan of the work is as follows. (1) To provide a general background to our data analysis we 
introduce the general notion of seismic luminosity, and discuss the difference between the “ideal” case, when 
random fluctuations are absent, and the case of real observations. We also analyze a few other theoretical 
points important for data processing and interpretation. (2) We decide to use teleseismic P waves from large 
intermediate-depth earthquakes, thus providing sufficiently long wide-band records of relatively “clean” 
body waves, and we select the particular frequency band to determine HF power signal. (3) We select 
records with good S/N ratio and with clear one-sided displacement signal. (4) We select an appropriate 
envelope function that emulates the formation of P-coda and we distort displacement signals using this 
envelope. (5) We calculate empirical correlation coefficients between displacement and HF squared power. 
(6) We determine the expected value for the same correlation coefficient for the ideal case when 
decorrelation is caused only by random fluctuations of the HF signal. We find that the empirical correlation 
is lower than the one expected purely from fluctuations, and we show that this difference is statistically 
significant. (7) We estimate the level of correlation between source slip rate and mean source luminosity, 
that is, for the ideal case with fluctuations completely suppressed. 
 
 
THEOREICAL BACKGROUND FOR DATA ANALYSIS 
 
Introducing luminosity 
 
Let us consider an infinite elastic space with Lame’s constant λ and µ and densityρ , that contains a planar 
shear fault that occupies the finite area Σ  on a plane with unit normal n. Let x={xk}={x1, x2, 0} be the 
coordinates on the fault plane, with their origin at the hypocenter, and let ξ={ξ1, ξ2, ξ3} be the coordinates of 
a receiver. Let the vector slip function be d D(0)( x,t) where d is the constant unit slip vector. Then the far 
field P-wave displacement along a ray with unit ray vector r =ξ /R, where R = ||ξ||, can be written as, 
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whereℜ  is the radiation pattern, and mij is the normalized seismic moment tensor. We band-pass filter both 
parts of (1) with a filter with central frequency f0 and cutoff frequencies (f0-∆f/2, f0+∆f/2), and to identify the 
filtered versions of (1) we omit the (0) superscript. Therefore the particle velocity at the receiver can be 
written as: 
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 Now let us assume that ),( tu ξ& and ( )tD ,x&& are random functions. This assumption means that 
we imagine an infinite number of similar faults, or ensemble of faults, all having the same statistical 
properties of the ( )tD ,x&&  function. (We do not assume here randomness for the direction vectors d or n.) For 
our aims it is sufficient that the product ),(),( stDtD ++ yxx &&&& , averaged over an increasingly larger number 

of sample faults, would converge to some limit ),(),( stDtD ++ yxx &&&& , denoted as second moment or 
covariance. The angular brackets denote “ensemble average”, or “mean”, that can be visualized as an 
average over an infinite number of examples/realizations. For the case of zero shift y=0, s=0, the covariance 
is reduced to variance, or mean square ( )tD ,2 x&& ; for any band-limited function, ),( tD x&& = 0. We treat 

the observed records as produced by a particular sample function, or realization, of ( )tD ,x&& , randomly 
selected from the described ensemble. At sufficiently high f0 , 5-10 or more times above the corner 
frequency, this assumption seems to be reasonable for real earthquakes. In this case, a filtered version of an 
observed record of velocity or acceleration (that corresponds to ),( tu ξ&  or ),( tu ξ&&  in our theory) often looks 
like a segment of non-stationary random noise.  
 We believe that it is a reasonable, further assumption that the high-frequency source function 

( )tD ,x&& can be treated in the same way. To determine the ensemble mean for the luminosity at the source and 
for the signal power at the receiver, we consider the product of two equations (2), pertinent to two copies of 
the finite fault area that are denoted Σ  and Σ ′ , computed at the same ξ, and we add the cρ factor to obtain 
the wave power flux or, briefly speaking, the power ),( tW ξ , at the receiver  
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Now we assume that the concepts of correlation radius, Rc   (over the source area), and of correlation time, Tc, 
can be applied to ( )tD ,x&& . This means, roughly, that within each space-time cell of size Rc×Rc × Tc, ( )tD ,x&&  
is a slowly changing, nearly deterministic, function. In space (along x), it can be assumed to be 
approximately constant. In time (along t), the situation is somewhat more complicated. We assume 
additionally that the mean source spectrum is slowly changing around f0, then we can assume that Tc =1/∆f. 
Informally, “slowly changing” means that there are not remarkable spectral features, like spectral spikes or 
holes, over the pass band, and that the spectral slope in this band is not large; all this does not contradict our 
knowledge regarding observed spectra (strong-motion or attenuation-corrected teleseismic ones) in the HF 
range. We can also assume that the correlation time for ),( tu ξ& equals Tc as well. We assume ∆f of the order 
of f, (like with octave or half-octave filter). Then the autocorrelation of ( )tD ,x&&  along t shall represent a small 
number (2f0/∆f) of nearly-sinusoidal swings of frequency about f0 with the envelope duration about 2Tc. 
Correspondingly, with respect to the argument t, and over a duration Tc, ( )tD ,x&&  can be assumed to be near 
to a modulated sinusoidal “wavelet” of visual frequency about f0 with the envelope duration about Tc. For 
each space-time cell, these wavelets will have particular individual phases and amplitudes. For a random 
fault model, these phases and amplitudes can be treated as uncorrelated random variates. The introduced 
space-time cells with a nearly-deterministic behavior of ( )tD ,x&&  within a cell are the main component of our 
approximate model. 

Now let us consider two isochrone surfaces (“sound cones”) in 4D (space and time) defined by two 
close arrival times t-Tc/2 and t+ Tc /2; these surfaces enclose between them a definite space-time “layer”. If 
some signal is observed at time t, the sound cone must intersect the space-time volume of the earthquake 
source process. To clarify this situation we give a sketch in Fig 1 that illustrates how the source points 
contribute to the signal at an arbitrary time t. The sketch represents the simplified case of a linear (and not 
planar) earthquake source. The source EE’ is located on the X axis in the XY plane; its point H is the 
hypocenter, where the rupture nucleates. The rupture history is represented by the area S in the x-t plane. The 
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receiver, at an arbitrary time, records the sum of all the source effects located on a 3D sound cone CC. The 
intersection of CC with S gives the line ii that can be named isochrone. We use this word in a sense that is 
different from that in Spudich and Frazer (1984), where the isochrone is a line on the fault surface related to 
the rupture front; their isochrone for the case shown in Fig. 1 is the pair of end points of the line ii. For a far-
field receiver, the cone CC in the vicinity of the fault degenerates to a plane and ii becomes a straight line 
segment.  

For a more realistic planar source , sound cones are two 3D objects, and their intersection with the 
earthquake process volume produces an “isochrone” layer (“thin”, with thickness Tc along time axis), with a 
certain projection onto the spatial fault surface. This projection can be assumed to consist of Nx squares of 
size Rc×Rc, so that the isochrone volume is approximated as a set of Nx space-time cells. The signals from 
these cells add up to produce the receiver signal in the interval (t-Tc/2, t+Tc/2). This is how the values of 

),( tu ξ&  (as well as ),()0( tu ξ ) are formed around the time instant t. Similarly to the case of ( )tD ,x&&  
over a cell, the values ),( tu ξ& in time can again be considered as nearly deterministic, over the 1D cell or 
bin of length Tc around time t, and to represent a short modulated sinusoid. The signal in the mentioned bin 
will be formed with a certain amplitude and phase, that are the (random) results of summing up signals from 
every cell of the isochrone layer.  

Let us consider the primitive case when summands (contributions from cells) are identical and equal 
to some D, and the envelope function is a boxcar. Then we have a sum of Nx sinusoids with random phases; 
and this sum is again a sinusoid whose phase is random and uniform in [0 2π], and whose amplitude is also 
random with rms value DNx

0.5.The randomness of the resulting phase is a very important fact; it implies that 
the estimation of the observed received power, over small time windows, shall produce highly oscillating 
results.  

A slight improvement can be attained by suppressing the oscillations caused by the “locally 
sinusoidal” shape of the signal (and preserving the variations of amplitude over time intervals of size Tc and 
longer). To do this one can use the amplitude of the analytical signal instead of the true receiver signal (that 
is, to use [ ]( ) 5.022 ),(H),( tutu ξξ && + where H[] is the Hilbert transform over t.) The phase information 
is lost in this approach, but this loss is absolutely irrelevant in our analysis.  
 Let us now consider the ensemble means. For the source cell number i, with area ∆Σ i, (equal in our 
case to Rc

2), we can write its contribution to the mean energy flux at the receiver for and around time t 
 

 ii dS
c

R
tDActW

i

∆Σρ∆
∆Σ 


















 +⋅
−≈ ∫

rx
x ,),( 22 &&ζ  (4) 

 
since we assumed ( )tD ,x&&  nearly constant over x within ∆Σi. These contributions are additive at the 
receiver because we assumed the independence of motion in each of the cells. Now we can introduce the 
mean P-wave luminosity ( )tL i ,x  through:  
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That is, ( )tL i ,x  is a constant over the cell i. In (5), the pre-integral factor is chosen so that its integral 

over the focal sphere Ω equals unity (we have taken into account that 5
2),,( =Ωℜ∫

Ω

drdn kji ). As a 

result, both the double integral of ( )tL ,x over S and t, and the double integral of the mean energy flux 

),( tW ξ , over the surface of the sphere of radius R and t, are equal to the mean seismic energy 〈E〉 in the 

frequency band ∆f. We note, incidentally, that at a fixed mean square slip acceleration ( )tD ,2 x&& , the 
luminosity (5) is proportional to the area of the cell. This is an important property meaning that the larger is 
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the correlation radius, the larger, generally, is the radiated HF energy (and also peak acceleration). 
Expressing ),( tW ξ  through (5) we finally obtain 
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that can be written symbolically as  
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This is not a true integral, however, because dS can never be infinitesimally small. Equation (7) is a 
generalization of the earlier result of Gusev(1983). Now we can write also the mean cumulative luminosity 
in P-waves, 〈 Lcum 〉, for the frequency band ∆f: 
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 When considering a particular set of observations (i.e., an individual realization of the random 
function)we can write similarly: 
 

 ( ) ( ) ( )dStD
c

tLtL
i

i
iion ∫==

∆Σ
∆Σ πρ

,
10

1,, 2
5 xxx &&  (9) 

 
and  
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The deviations of ( )tL ,x  from ( )tL ,x  and of ),( tW ξ  from ),( tW ξ  are inevitably large, as 

already explained. To overcome this difficulty one can smooth the observed ),( tW ξ  function within a 
window of width Tsm> Tc and thus reduce the fluctuation noise. The values of the observed ),( tW ξ , when 
sampled with the step Tc, represent independent positive values. One may reduce the fluctuation noise by 
averaging the observed data over bins of size Tsm > Tc (or smoothing them in a similar way). The results will 
have a smaller coefficient of variation CV than the original values (the estimate for the gain in CV is about 
(Tsm / Tc)0.5). However, this approach is of a limited use. The value of Tsm must be much smaller than the 
source process duration T, to keep at least a minimal resolution. Unfortunately, with teleseismic 
observations, the ratio T/ Tc is of the order of several tens, and there is no hope to reduce fluctuations 
significantly. In the following we discuss a workaround that we use to analyze data with large fluctuations. 

 
Luminosity-slip rate correlation and observable time functions 

 
Because of the close analogy between (1) and (10), one can believe that when the named correlation is 
present, it can be transferred, without any deviation, to a similar correlation between ),()0( tu ξ and ),( tW ξ . 
Indeed, both (1) and (10) are merely weighted sums of ( )tD ,)0( x&  and of ( )tD ,2 x&& . Let us now assume that 

the summation of ( )tD ,)0( x&  values is performed on two steps: in the first step, the summation is done 
within each subarea ∆Σi, and only afterwards these sums are combined to form the left hand side (LHS) of 
(1). Let us further assume that the integral of the type (9) for ( )tD ,2 x&&  and an analogous integral for 

( )tD ,)0( x& , for a given i and a given t, can be treated as random variates, and consider their 2×2 covariance 
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matrix that defines their coefficient of correlation. (Though ( )tD ,)0( x&  is a deterministic object, this is still 
an acceptable approach because second moments exist for it and its integral). Let us also assume that, apart 
from a numerical factor, these covariance matrices for different i and t, are identical. The covariance matrix 
of a sum is a sum of covariance matrices of summands. For this reason, after summation over i and averaging 
over t, the result (a sample value of smoothed ),( tW ξ and a similarly smoothed value of ),()0( tu ξ ) will 
have the covariance matrix that is similar to such matrix of any summand, and thus the same coefficient of 
correlation. We can conclude that the correlation coefficient between wave displacement and mean wave 
power flux truly represents the similar coefficient between slip rate and mean luminosity. 
 However this result holds for the ideal case only. With observed data, we shall estimate the 
correlation coefficient from a fluctuating signal. In this case, the result will inevitably be biased. We reiterate 
that these fluctuations are caused by the inevitable oscillations of amplitude of a band-limited signal, that 
take place even when the mean signal power is strictly constant. The fluctuations will result in errors in the 
estimates of the variance-covariance. These errors will have positive or negative sign, and, generally, might 
compensate each other, for example in multiple-recorder averaging. Nevertheless their effect on the observed 
correlation coefficient will be asymmetric: the high values of the correlation coefficient will in most cases be 
reduced. This is evident for a model case of two copies/realizations of a segment of slightly non-stationary 
random signal (with constant mean power). In this case, the “ideal”coefficient of correlation between 
squared mean amplitudes is automatically equal to unity; whereas for any actual pair of realizations, this 
coefficient will be less than unity. 

Let us now consider in more detail the already mentioned correlation coefficients: the “ideal” 
(ensemble mean) correlation coefficient ρid; the observed coefficient ρob; and the maximum potential 
observable coefficient ρobmax, corresponding to the unity value for the case of the ensemble mean. Our final 
aim is to determine ρid knowing ρob, and, for this purpose, to know the value of ρobmax can be useful. To 
determine ρobmax, we take the long-period signal u (0)(t) and use it as the envelope function for a hypothetic 
power signal W(t). Using this prescribed envelope, we simulate a number of realizations (say, 25) of band-
passed nonstationary noise (each of them appears like )(tu& ). From these 25 artificial data we determine the 
average correlation between the squared result and the initial u(0)(t) function, and consider it as an estimate 
for ρobmax. 

With ρob and ρobmax values at hand, we could estimate ρid, provided we can establish a theoretical 
relationship among ρob, ρobmax and ρid. In order to find such a relationship we shall construct a simple model 
of fluctuating signal. Let us consider a random vector a ={ai} whose components describe the sequences of 
(positive) amplitudes of u(0)(t); the components ai have the same distribution and they can be mutually 
correlated in some irrelevant way. To represent the different degrees of correlation between u (0)(t) and )(2 tu&  
we introduce another vector b, with the same dimension as a but statistically independent from a, and form 
the vector d0, defined as a weighted sum of a and b : 

d0=ca+(1-c)b=ca+pb 

where c defines the degree of correlation (0<c<1)and p=1-c. 
The pair of vectors (a,d0) represents “ideal” observations for the case of limited correlation. It is easy 

to see that the correlation coefficient between a and d0 is 
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It varies between unity when c=1 and zero when c=0, as could be expected. To imitate the formation of 
random fluctuations of a certain size, we multiply d0 by a random factor obtaining: 
 
 d=d0(1+ks) (12) 
 
where s is a random vector of the same size as a, with zero mean, and k is a “spoiling” coefficient that 
defines the relative level of the fluctuations. With k=0, we return to the “ideal” case. In the non-ideal case, 
one can show that 
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We further assume that a and b are distributed exponentially; this is accurate for the amplitude of the 
analytical signal formed from Gaussian noise, and such a representation is adequate for our aims. This gives 
 

 [ ] 5.02222 )1(
),Corr(

++++
=

pczpc
cda  (14) 

 
where we denoted z the unknown combination k2/var(s) .We shall use formula (14) in two ways. First, we 
can deduce the value of  z  from ρobmax setting c=1; and, second, with the z value at hand, we can deduce the 
unknown c value (and thus ρid value) from ρob. 
 
Compensating for scattering of HF waves 
 
One additional complication in our data analysis is caused by the distortion of the signal along the path to the 
station. Whereas the displacement P-wave waveform can be treated relatively safely as if it was radiated in a 
homogeneous medium, high-frequency signal is significantly distorted by scattering and multipathing, as 
always seen in the formation of P-wave coda. Since the incoherent energy is additive, this process is linear 
for power, and can be described by the convolution of power time histories (strictly, for ensemble averages): 
 
 Ws(⋅)=Wo(⋅)∗ Wh(⋅) (15) 
 
where Ws(t), Wo(t) and Wh(t) are the power (squared high-frequency amplitude) time histories for, 
respectively: signal at a station; signal at the source for the particular ray directed to the station, and for the 
“power Green’s function of the medium” for the same particular ray. All these correspond to a particular 
moment tensor orientation of the source, to a particular component at the station and to a particular 
frequency band. To recover Wo(t) from the observations, Gusev and Pavlov (1991) proposed to consider the 
convolution with Wh (t) as a filter, to construct the corresponding inverse filter Wh

-1 (⋅) from a record of an 
aftershock with similar moment tensor orientation and to apply this inverse filter to Ws(⋅). This procedure has 
been successfully applied to recover first and second time moments of records of two large earthquakes, and 
further to determine the centroid and the size of the HF earthquake sources. However this procedure is less 
reliable when applied to reconstruct details of Wo(t), because the result of the inversion depends, to some 
degree, on the choice of the stabilizing constraints used in the inversion. Thus, when using such waveforms 
for the study of the correlation one has difficulties in producing really convincing result.  

In the present study, because of its specific purpose, we use another approach. To obtain comparable 
low- and high-frequency signals, we artificially distort low-frequency signal by convolution with an operator 
that imitates Wh(t). Then we can determine the correlation between comparable objects: artificially distorted 
low-frequency signal and naturally distorted raw high-frequency signal. At first, we made attempts to 
determine an usable approximation to Wh(t) by averaging high-frequency squared records of smaller, short-
duration, intermediate-depth earthquakes (M=5.0-5.6), but found out that these records contain too much 
noise to perform reliable averaging. We then took another approach and selected a number of records of 
earthquakes with M=5.8-6.2, with relatively short durations of 2-3 s. Using the formula (15) and 
approximating Wo(t) with the displacement pulse, we select, by trial and error, a credible analytical 
representation of Wh(t), common to all stations and earthquakes. This artificial signal is then applied to 
modify each low-frequency record. 

 
  
DATA SET AND ITS PROCESSING 
  
To compare observed far field displacement and power time functions, we need clear isolated body wave 
signals with sufficiently high signal to noise(S/N) ratio over a sufficiently wide frequency band. From each 
“raw” GDSN BB record we reconstruct the time histories for displacement and for squared, high-frequency 
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band-filtered, velocity, or “power”. These time histories, after smoothing and decimation, can be used to 
analyze the slip rate-luminosity relationship at the source.  

An important practical step is the selection of signals with clear, one-sided (positive or negative) 
displacement time history. This type of signal is theoretically predicted for a planar shear source (double-
couple source). Intermediate-depth earthquake sources mostly follow this model. Despite a considerable 
number of deviations, we have been able to select a considerable number of events whose mechanism is 
sufficiently near to plane shear. To collect data we initially selected all earthquakes in the IRIS DMS 
database since 1990 with Mw≥6.8 and focal depth H=90-200 km. P-wave groups on broad-band vertical 
(BHZ) channels (sampling interval ∆t0=0.05 s) of GDSN stations at epicentral distances from 25° to 100° 
have been retrieved through the IRIS DMS center. At first, for each of the 31 events we have initially 
selected, 5-10 P-wave records, with acceptable S/N ratio, have been analyzed. For intermediate-depth events, 
typically no overlapping of P-wave and pP-wave groups can be expected, but the actual situation depends on 
the particular combination of source depth and source duration. The events for which the P and pP groups 
are not suffuciently separated have been discarded. In the case of a simple double-couple source, P-wave 
displacement should appear as unipolar (one-sided) pulse. However, for a considerable fraction of events 
there is a large proportion of records (non-nodal) that are not one-sided, manifesting complex ruptures. These 
cases have also been omitted from our data. The remaining 23 events have been kept for further study (Table 
1). For these events, additional records have been retrieved. We selected a common upper cutoff frequency 
for analyzing all events and records, on the basis of the actual signal to noise S/N ratios. We found out that 
despite a number of favorable cases (stations in central parts of continents), the highest usable frequency is 
typically 2.5-3 Hz. Thus we selected 2.5 Hz as the common upper cutoff. When forming a set of records for 
a particular event, we applied the following rules: 
1. the S/N ratio is no less than 2-3 at 2.5 Hz ; 
2. for each group of near stations, that have recorded similar waveforms, only one is selected; 
3. near-nodal records are rejected. 
 As a result, we keep from 5 to 18 records per station. These records are taken from the BHZ channel, 
deconvolved for the channel transfer function and for the attenuation operator, with t*=0.5 (with phase 
correction). The result represents an initial velocity record. To form a well-defined displacement signal, the 
initial record is low-pass filtered with a zero-phase filter with 0.7 Hz upper cutoff, and then integrated, to 
produce an empirical estimate of u(0)(t), that we further denote with m(t). To form the receiver “power” 
signal, the initial record is filtered with a zero-phase band-pass filter with cutoffs at 0.5 and 2.5 Hz, and the 
squared analytical signal is formed, giving an empirical estimate of )(2 tu& , that we denote as p(t). Then we 
perform smoothing of m(t) and p(t), using the time window of boxcar shape, with the width ∆t that has been 
selected on a case by case basis, but typically about 0.8s; ∆t is always a multiple of the initial time step 0.05 
s. The results were decimated with the time step ∆t, producing two sequences of statistically independent 
consecutive average amplitude values denoted with mi, and pi. 
 To select the Wh(t) function, several earthquakes with Mw=5.8-6.2 are analyzed. Fig 2 shows four 
examples. One can see the “power” signal pi, the displacement signal mi, and the modified displacement 
signal that will be denoted by qi, obtained by convolution with the following representative or typical shape 
function (arbitrary scale):  
 
 3.0)]5.1/exp(0.1[)1.0/exp(1000)( tttttW −+−=  (16) 
 
The shape (16) has been determined by trial and error on the basis of the qualitative analysis of about 50 
records, at different stations, of eight earthquakes. One could expect that for intermediate-depth sources, the 
scattering effect is mostly related to the vicinity of the receiver and thus will be specific for a station. Such a 
behavior, if it exists, must be rather moderate: the variations of P-wave coda amplitude between individual 
records at the same station, seem to be of the same order as between two stations. One can see in Fig. 2 that 
sometimes the assumed “average” Wh(t) shape produces a quite nice fit to the data; in other cases it may 
somewhat underestimate or overestimate the scattering-related bias.  
 
 During the main stage of the data processing, for each analyzed record, the following procedure has 
been followed: 
(1) application of the instrument and attenuation correction, filtering, and calculation of the power (as 
explained above) to produce the two traces m(t) and p(t); 
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(2) selection of the onset time, common to m(t) and p(t), by visual inspection of both traces; 
(3) definition of the end time for m(t), by visual inspection, using as criterion the return of the trace to the 
zero line (the individual values of duration dm obtained in this way vary between 6 and 20 s); 
(4) selection of the end time for p(t), by visual inspection, either when the P-coda level becomes small or, 
more often, just before pP onset; 
(5) convolution of m(t) with the assumed Wh(t)to obtain the modified displacement q(t); selection of the end 
time of q(t) identical to that of p(t), and determination of the duration parameter dp; 
(6) using the preset common integer parameter k0=16, determination of the time unit ∆t=∆t0(Integer 
(dm/k0)+1), and the final number of time bins k1=Integer ( dp /∆t ) slicing the already isolated m(t), q(t) and 
p(t) pulses in k, k1 and k1 identical time bins of duration ∆t, and averaging each function over each bin; the 
resulting time sequences are denoted mi, qi and pi; 
(7) calculation of the coefficients of correlation ρob between qi and pi, (and also ρob0 between mi and pi over 
only k segments, for comparison); 
(8) generation of Nsim=25 realizations of 0.5-2.5 Hz band-limited noise, and construction of simulated HF 
signals, using q(t) as an envelope function; step 6 is then applied to produce simulated “power” traces psim(t), 
and simulated sequences psim,I; step 7 is applied to calculate Nsim variants of the correlation coefficient ρsim 
between qi and psim,I; from Nsim values of ρsim, determination of the average ρsimav and of its standard deviation 
ssim (we believe that ρsimav is a good estimate for ρid  that gives an upper limit for ρob); 
(9) calculation of the Student’s t-value (ρsimav -ρob)/ssim to judge the significance of the difference between ρob 
and ρsimav. 

In Fig 3 we show a number of random realizations of the noise-like signal generated from the same 
q(t) function, and the actual p(t) function. The variability of noise realizations is significant but still limited, 
and the actual observed p(t) looks different from any of the noise realizations. The entire processing 
sequence is illustrated in Fig 4.  
 
 
RESULTS AND THEIR ANALYSIS 
 
In Table 1, the list of the analyzed earthquakes is given. In Table 2 we give an example of the results for 
several records of the same event (No.20 in Table 1). In Table 3 we give the average results for all studied 
earthquakes. The main results can be summarized as follows. 
1. Source durations typically vary from 12 to 25 s, resulting in ∆t values of 0.7-1.5 s. To unravel the presence 
of possible noise in the values of pi after smoothing over the window of such a duration, it is appropriate to 
observe that the correlation time for our HF data is near to the inverse of the frequency bandwidth, or about 
0.5 s, so that the number of degrees of freedom per single pi value is very low (1.5-3). This means that pi 
values must have a significant scatter, and just this is seen on the simulations of Fig 3. For this reason, it is 
indeed critical to apply formal statistical analysis in order to determine whether the correlation between qi 
and pi is comparable or significantly lower than the similar correlation between qsimi and qi.  
2. The values of ρob for individual records of a single earthquake vary significantly, but are systematically 
lower than ρsim. The standardized difference t (Student’s value) varies significantly, and typically is around 
2.3, giving significance levels between 20% (or more) and 0.1%, and typically about 5%. Since each record 
gives an independent observation, these probabilities from individual records of the same event must be 
multiplied to give the joint significance level. It is evidently very low, so that the statement “ρob is below 
ρsim” can be considered true even for the data of a single earthquake. The data of the whole set of earthquakes 
makes this conclusion proven. 
3. The values of ρsim are rather stable, of the order of 0.7, and they indicate that the lack of close visual or 
formal correlation between qi and pi or between q(t) and p(t) is the result of the properties of the data, and 
must be a general rule for our combination of bandwidth and duration, irrespectively of the degree of 
correlation between qi and the unobservable mean pi. Only the degree of correlation (or, maybe better to say, 
decorrelation) has a physical meaning. 
4. Average ρob values of individual earthquakes fall in a relatively narrow range 0.35-0.65. The average over 
all earthquakes is 0.52, and it can be taken as the lower limit for the “ideal” correlation coefficient, ρid, for 
any earthquake. 
 In Fig 5 we give examples of mi , qi , and pi sequences for four records of different earthquakes, with 
high and low levels of correlation. Case (b) is anomalous; it not only has the lowermost ρob value, but its 
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record look merely paradoxical because one or more bursts of HF energy occurs during the time interval of 
near-zero slip rate. Our preliminary explanation is that this earthquake caused a short series of low moment, 
very high-stress-drop aftershocks with a very small delay with respect to the main shock. The tendency of 
HF energy bursts to appear just near the end or even slightly later than the visual end of a displacement pulse 
was seen also in other cases, though not so prominently.  
 To roughly estimate the “true” coefficient of correlation between mean power and displacement 
(assumedly equal to the “true” coefficient of correlation between slip rate and luminosity at the source), we 
first use Eq. 14 with c=1 for the case of simulated data, and assume there Corr(a,d) to be equal to the 
average ρobmax=0.72. Solving with respect to z we obtain the estimate z = 0.46. We can now set it in (14), and 
assuming in the right-hand side of (14) Corr(a,d)= ρob = 0.52 (average value), we can resolve (14), with 
respect to c, and obtain c=0.57. From (11) we now determine average estimate Corr(a,d0)= ρid =0.80. By 
means of the same procedure, starting from the interval of station averages for individual events ρob=[0.35-
0.65], we obtain the estimate of range for ρid values of individual events as [0.54-0.96]. These values 
represent our final results regarding true (ensemble-mean) values of the correlation coefficient both for the 
record and for the source.  
 
 
DISCUSSION 
 
The average value of the correlation coefficient ρob =0.52 is the observed average value for a particular 
combination of source duration range and frequency band. Variations of ρob between individual earthquakes, 
from 0.35 to 0.65, indicate genuine differences between earthquakes. These figures agree with the intuitive 
understanding that can be acquired from visual inspection of seismograms obtained by several 
simultaneously working channels with different passband. The deviation of these values from unity has two 
components: genuine difference between slip rate and mean luminosity, and random fluctuations. As the 
effect of these fluctuations is excluded from the “ideal” correlation values ρid, the “ideal” average value 
ρid=0.80 and the range 0.54-0.96 reflect intrinsic properties of the radiating faults. These values mean that 
although the decorrelation between the slip rate and mean luminosity is typically present, the degree of this 
decorrelation is moderate.  
 An important question is whether our results obtained for intermediate earthquakes can be 
extrapolated to shallow earthquakes whose properties may be of much broader geophysical and practical 
importance. We are unaware of any evidence that the physical mechanisms of shallow and intermediate 
earthquakes are different: both populations are shear dislocations with, generally similar source spectra, and 
the typically noted difference of average stress drop value is quantitative, not qualitative. This makes it 
reasonable the idea that the general conclusion of this paper – that low-frequency low-wavenumber motion 
and high-frequency high-wavenumber motion at the source are correlated only up a limited degree – can be 
transferred to the case of shallow earthquakes. We believe that even our numerical estimate ρid=0.80 can be 
taken as a starting approximation for shallow earthquakes. This value can be treated as a constraint that 
should be imposed on the simulated local source slip rate and simulated local mean luminosity, in order to 
represent realistically the wide-band source radiation. Simulated mean luminosity is of course the average 
over the realizations obtained in a series of simulations. For a single realization of luminosity, the expected 
correlation is much lower, like 0.52 in our case. 
 
 
CONCLUSIONS  
 
1. A data processing procedure is developed that is suitable for the study of the correlation between 
displacement and high-frequency (HF) power in the teleseismic P-wave signal. In this procedure we 
considerably suppress the bias related to the formation of HF P coda through scattering. 
2. Having analyzed 344 teleseismic records of 23 intermediate-depth earthquakes, we found that the 
correlation between time histories of displacement and HF (0.5-2.5Hz) power is limited, with the average 
coefficient of correlation equal to 0.52; the range of averages over the records of individual earthquakes 
varies from 0.35 to 0.65.  
3. Although the decreased correlation property is partly an evident effect of the random, stochastic nature of 
HF waves, this explanation is incomplete. We show statistically that there is also a highly significant 
contribution of “true” decorrelation between displacement and mean (ensemble-average) HF energy. 
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Estimated values for the mean coefficient of correlation are: the average over events: 0.80, the range for 
individual earthquakes: from 0.54 to 0.96 
4. Our estimates  of the  coefficient of correlation between displacement and high-frequency (HF) power in 
P-wave signal can be transferred without  change to the correlation between local source slip rate and local 
P-wave luminosity (or radiated power flux) for the same spot of the fault. 
5. The results suggest a limited correlation between slip rate and HF power also for shallow earthquakes. 
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Table 1. Parameters of the earthquakes used for the study. 
 

No Date Time Lat. ° Long.° Depth, km Mw Nsta 

1 1990/07/27 12:37:59.5 -15.35 167.46 125 7.2HRV 4 

2 1993/01/15 11:06:05.9 43.30 143.69 102 7.6HRV 7 

3 1993/05/24 23:51:28.2 23.23 -66.63 221 7.0NEIC 9 

4 1993/08/09 12:42:48.1 36.37 70.86 214 7.0HRV 9 

5 1994/02/11 21:17:31.1 -18.77 169.16 205 6.8HRV 10 

6 1995/06/29 12:24:03.2 -19.54 169.28 139 6.6HRV 7 

7 1995/10/21 02:38:57.1 16.84 -93.46 159 7.2HRV 10 

8 1995/12/25 04:43:24.4 -6.90 129.15 141 7.1HRV 11 

9 1996/04/16 00:30:54.6 -24.06 -177.03 110 7.2HRV 8 

10 1997/05/03 16:46:02.0 -31.79 -179.38 108 6.9HRV 15 

11 1997/09/02 12:13:22.9 3.85 -75.75 198 6.8HRV 9 

12 1997/10/14 09:53:18.1 -22.10 -176.77 167 7.7HRV 9 

13 1997/10/28 06:15:17.3 -4.36 -76.68 112 7.2HRV 8 

14 1997/11/15 18:59:24.3 -15.14 167.37 123 7.0HRV 14 

15 1998/01/04 06:11:58.9 -22.30 170.91 100 7.5HRV 6 

16 1998/07/09 14:45:39.9 -30.48 -178.99 129 6.9HRV 12 

17 1998/07/16 11:56:36.4 -11.04  166.16 110 7.0HRV 11 

18 1998/12/27 00:38:26.7 -21.63 -176.37 144 6.8HRV 17 

19 1999/02/06 21:47:59.4 -12.85  166.69 129 7.3HRV 10 

20 1999/04/05 11:08:04.0  -5.59  149.57 150 7.4HRV 18 

21 1999/05/10 20:33:02.0  -5.15  150.88 134 7.1HRV 19 

22 2000/03/28 11:00:22.5  22.33  143.73 163 7.6HRV 18 

23 2000/05/12 18:43:18.1 -23.54  -66.45 225 7.2HRV 10 

 
 Nsta - number of records processed for each event 
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Table 2. Results of the processing for the event 990206 (No.19) for all 10 stations; the broadband vertical 
(BHZ) channel.  
 

sta. dm ,s dp , s k1  ∆t, s  ρob0 ρob  ρsimav σsim  tSt

anmo 14.6 17.3 18 0.95  0.14 0.32 0.74 0.092 -4.54

bjt  6.0 12.7 33 0.35  0.36 0.25 0.72 0.121 -3.82

brvk 15.3 15.6 16 0.95  0.02 0.24 0.64 0.156 -2.57

cola 10.5 15.7 23 0.65 -0.17 0.00 0.68 0.133 -5.12

ctao 10.4 13.0 19 0.65  0.07 0.35 0.64 0.090 -3.29

kurk 11.7 14.2 19 0.75  0.84 0.86 0.75 0.105  1.05

pfo 13.7 15.6 18 0.85  0.46 0.55 0.70 0.100 -1.51

tly  8.7 11.6 21 0.55  0.20 0.35 0.67 0.109 -2.96

uln  7.4 11.8 25 0.45  0.50 0.46 0.69 0.134 -1.69

yak  8.0 11.9 23 0.50  0.28 0.31 0.67 0.123 -2.92

average 10.6 13.9 22 0.66  0.27 0.37 0.69 0.116 -2.73

st.dev.  3.1  2.0  5 0.21  0.29 0.23 0.04 0.021  1.74

 
dm and dp : visually selected durations for the displacement pulse and the 0.5-2.5 Hz power pulse; k1: number 
of time bins within the duration of Tp; ∆t: size of a time bin; ρob0 - correlation coefficient determined from mi 
and pi over k0=16 bins (for reference only, further not used), ρob: same, determined from qi, and pi over k1 
bins; ρsimav and σsim: average coefficient of correlation over 25 simulated psimi sequences, and empirical 
standard deviation over each group of 25 values, tSt – Student’s t-statistic for testing the hypothesis ρob <ρsimav 
(tSt =(ρsimav -ρob)/σsim)  
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Table 3. Results of the calculation for each of the 23 earthquakes. 
 

No.  Event   ρob 
 σρob 

ρob 
 σρob 

ρsimav 
σρsimav 

tSt  
 σ tSt  

      
1 900727   0.31 0.48  0.728  -2.94  
          0.23  0.081  0.033  1.514  
2 930115   0.37  0.51  0.749  -3.058  
          0.31  0.205  0.058  2.814  
3 930524   0.37  0.508  0.66  -1.541  
          0.19  0.129  0.063  1.121  
4 930809   0.28  0.418  0.743  -3.585  
          0.20  0.232  0.048  2.718  
5 940211   0.48  0.604  0.73  -1.4  
          0.31  0.208  0.057  2.014  
6 950629   0.35  0.411  0.721  -2.997  
          0.22  0.242  0.062  2.946  
7 951021   0.46  0.543  0.788  -3.32  
          0.20  0.188  0.049  3.332  
8 951225   0.52  0.622  0.748  -1.261  
          0.22  0.175  0.066  1.908  
9 960416   0.47  0.514  0.72  -1.762  
          0.40  0.355  0.04  2.831  
10 970503   0.47  0.351  0.697  -3.226  
          0.34  0.292  0.069  2.666  
11 970902   0.47  0.629  0.731  -1.07  
          0.25  0.129  0.052  1.371  
12 971014   0.49  0.558  0.773  -2.763  
          0.22  0.275  0.079  2.7  
13 971028   0.58  0.629  0.739  -0.976  
          0.15   0.128  0.044  0.903  
14 971115   0.44  0.541  0.735  -1.936  
          0.28   0.218  0.032  2.259  
15 980104   0.64  0.615  0.77  -1.49  
          0.19  0.206  0.083  1.68  
16 980709   0.39  0.477  0.708  -2.208  
          0.26  0.274  0.055  2.153  
17 980716   0.36  0.522  0.66  -1.112  
          0.35  0.209  0.032  1.759  
18 981227   0.38  0.464  0.666  -1.853  
          0.35  0.244  0.068  2.474  
19 990206   0.27  0.369  0.691  -2.739  
          0.29  0.225  0.038  1.748  
20 990405   0.39  0.456  0.753  -3.693  
          0.20  0.145  0.050 2.571  
21 990510   0.566  0.561  0.700  -1.281  
          0.24  0.272  0.038  2.466  
22 000328   0.31  0.502  0.679  -1.838  
          0.36  0.302  0.053  3.20 
23 000512   0.48  0.548  0.718  -1.554  
          0.27  0.245  0.025  2.125  
      
 average 0.427   0.514 0.7220   -2.1567  
 st.dev.1 0.096 0.079 0.0355   0.8824  
 st.dev.2 0.261 0.216 0.0519   2.2293  

 
The values ρob0, ρob, ρsimav, and tSt are averages over stations processed for each earthquake, and correspond 
to the lowest but one line of Table 2. In the main part of the table, two lines are given for each earthquake, 
the upper one contains mean values over Nsta records, and the lower one, italicized, contains standard 
deviations obtained in averaging over several records of the same earthquake. The three lowermost lines 
contain: average over events (i.e. over station averages), standard deviation st.dev.1 among events, and 
st.dev.2 - average over “within-event” standard deviations (italicized), respectively.  
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Figure 1. Formation of the body wave high-frequency power flux signal for the case of a linear earthquake 
source: a – in the 3D space (x,y,t), b – the detail of a in the (x,t) plane . The source occupies the segment EE’ 
of the x axis, and the time axis increases downward. In a, the observation space-time point is R, and it 
corresponds to a particular time t. CC is a “sound cone”, i.e. the surface over which the signal received at R 
can be generated. The hypocenter or nucleation point is denoted by H, and the area S is the space-time area 
of the earthquake source process. CC and S intersect along the isochrone ii, where the signal received at R is 
generated. The vertical segment at R depicts the finite time window over which an individual meaningful 
estimate of the received power can be made; its length is equal to the signal correlation time Tc. In b we 
illustrate that the mentioned estimate can seen as formed by independent contributions from the space-time 
cells, with cell dimensions Tc along time, and Rc along x, situated along the isochrone. 
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Figure 2. Illustration to the performance of the selected typical medium power response shape function (16). 
The convolution procedure is applied to P-wave records of M=6 earthquakes. Solid line: power in the 0.5-2.5 
Hz band; dots: displacement; dashes: predicted power signal, constructed through the convolution of  the 
displacement signal with the pulse of the selected shape (16) that assumedly emulates the response of the 
medium. Real HF pulses including codas are generally comparable with the predicted ones, but with large 
deviations.  
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Figure 3. Illustration of the procedure used to estimate the significance of the displacement-power 
correlation. a: signals with original time step 0.05 s: “raw” HF power p(t) signal (1), modified displacement 
q(t) (2), and simulated HF power psim(t) (five realizations 3-7), for the event 000328 recorded at the station 
PFO. b: smoothed and decimated variant of the same functions (denoted pi;, qi; psim,i.) with the time step 
∆t=0.65 s (averaging by 13 points). Averaging in this way gives about 1.5 degrees of freedom for each data 
point in b, because Tc≈∆f-1=(2.5-0.5)-1=0.5 s. All intuitively significant variations of the data shown in a are 
preserved in b. The variability among the random realizations (3-7) is well-expressed, yet the actual observed 
signal (1) looks different from any of them, illustrating that the lack of correlation between (1) and (2) cannot 
be ascribed solely to the random fluctuations. 
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Figure 4. Processing procedure. a: displacement signal m(t) (1), band-pass filtered velocity signal (3) and 
estimated power signal p(t)(2). b: control of the S/N ratio; (1): signal power spectrum (PS), (2): same for 
microseismic noise. Around 2.5 Hz, S/N becomes large. c: raw mi (1) and modified qi (3) displacement 
signal, and “power” signal pi(3); d: correlation plot between qi (abscissa) and   pi (ordinate). 
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Figure 5. Examples of relatively good (a), exceedingly low (b), relatively low (c), and unusually good (d) 
correlation between pi (HF power, solid line) and qi (modified displacement, dashes) signals. Solid line: 
“power” signal, dots: “raw” displacement; dashes: modified displacement  


